Ryoga Iwanami (Waseda University) Kaname Matsue (Kyushu University) Hiroyuki Ochiai (Kyushu University)
Ph.D., Associate Professor Global Center for Science and Engineering, Waseda University, Tokyo, Japan
Born in Nagasaki Prefecture, raised in Yamaguchi Prefecture
Interests: Delicious food and drinks
🇫🇷 Great respect for French culinary culture!!
$$ \Huge\left\|u-\hat{u}\right\|\leq r $$
***mid-rad type*** error estimate
**Recent our interest (Sub- and Super-solutions are useful)**
$$ \begin{align} \left\{\begin{array}{l l} -\Delta u-g(u)=f &\rm{in~}\Omega\\ u=0 &\mathrm{on} ~\partial\Omega\\ \end{array}\right. \end{align} $$
<aside> 💾 Definition (existing definition)
We call $\overline{u}\in H^{1}\left(\Omega\right)$ a super-solution of (1) if
Sub-solution: Reversed inequalities
Note:
If $\overline{u}$ is $H^2$ regular, then checking the following two conditions is sufficient:
<aside> 🖊️ Comparison Theorem
Let $\underline{u}, \overline{u}\in H^{1}\left(\Omega\right)$ be sub- and super-solutions of (1) if $\underline{u}\leq \overline{u}$ then, there exists a solution $u$ of (1) satisfing
$$
\underline{u}\leq u \leq \overline{u} \text{\rm on}\Omega
$$
</aside>