Green's function-based framework for pointwise enclosures: Extending sub- and super-solutions of Poisson's equation

Kazuaki Tanaka (Waseda University)

Ryoga Iwanami (Waseda University) Kaname Matsue (Kyushu University) Hiroyuki Ochiai (Kyushu University)


About me

教員紹介写真(田中一成).jpg

TANAKA, Kazuaki

Ph.D., Associate Professor Global Center for Science and Engineering, Waseda University, Tokyo, Japan

Born in Nagasaki Prefecture, raised in Yamaguchi Prefecture



Enclosing solutions of differential equations

$$ \Huge\left\|u-\hat{u}\right\|\leq r $$

             ***mid-rad type*** error estimate

Untitled

            **Recent our interest (Sub- and Super-solutions are useful)**

Application


Sub- and super- Solution of Elliptic Differential Equation

$$ \begin{align} \left\{\begin{array}{l l} -\Delta u-g(u)=f &\rm{in~}\Omega\\ u=0 &\mathrm{on} ~\partial\Omega\\ \end{array}\right. \end{align} $$

<aside> 💾 Definition (existing definition)

We call $\overline{u}\in H^{1}\left(\Omega\right)$ a super-solution of (1) if

  1. $(\nabla\overline{u},\nabla v)+\langle -g(\overline{u}),v \rangle\geq \langle f,v \rangle~~~~~\forall~v\in H_{0}^{1}\left(\Omega\right)\cap L_{+}^{2}\left(\Omega\right)$
  2. $\overline{u}\geq 0$ on $\partial\Omega$ </aside>

Sub-solution: Reversed inequalities

Note:

If $\overline{u}$ is $H^2$ regular, then checking the following two conditions is sufficient:

  1. $-\Delta u - g(u) \geq f$
  2. $\overline{u}\geq 0$ on $\partial\Omega$

<aside> 🖊️ Comparison Theorem

Let $\underline{u}, \overline{u}\in H^{1}\left(\Omega\right)$ be sub- and super-solutions of (1) if $\underline{u}\leq \overline{u}$ then, there exists a solution $u$ of (1) satisfing

$$ \underline{u}\leq u \leq \overline{u} \text{\rm on}\Omega $$

</aside>